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Summary
A new method for the determination of the volume fraction of of fibrils formed inside the
crazes in polymers before their brittle fracture has been proposed. The method utilizes
small-angle X-ray scattering measured on an absolute scale in combination with the precise
measurement of the sample deformation. The method has been applied to the crazes in
polystyrene for which the data on v f are abundant. The result vf.-0.26 is in good agreement
with those obtained by other methods ranging vf-0.21-0.30, which confirms the validity of

the proposed method.

Introduction
The structure of crazes grown in various polymers prior to their fracture is essentially
different from that of cracks observed for non-polymeric materials; the craze is comprised
of fibrillar organization embedded in the void matrix and connecting the opposing
craze/bulk interfaces, whereas the crack is merely a slit devoid of material. Because of this
structure a craze can support loads, while it can become an embryo of macroscopic fracture
of the polymer. Elucidation of the structure of the craze and its change during the fracture
process, therefore, is of crucial importance for comprehensive understanding of the fracture
mechanism of the polymer. Among various parameters characterizing the craze structure,
the volume fraction v1 of the fibrils in the crazes is most interesting, because it can be related
to the molecular properties of the polymer, i. e. to the maximum extension ratio of the
polymer chains between adjacent entanglement points, through the extension ratio of the
fibrils as suggested by Kramer and Berger (1).
A variety of methods to estimate the value of v f have been proposed. Kambour (2)
employed the refractive index of crazes determined from the critical total reflection angle.
Doyle (3) has estimated of from the thicknesses of the original and the thermally collapsed
crazes obtained by the optical measurements of the level differences on the fracture surface.
Lauterwasser and Kramer (4) and Brown (5) proposed an elaborate method utilizing the
mass thickness contrast on the transmission electron micrographs observed for the crazes
grown in thin films. Dettenmaier (6) has proposed a combination of small-angle X-ray
scattering measurements (SAXS) on the absolute scale with density measurements of the
crazed specimen. This method is useful for the crazes which lead to large density
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difference between the original and the crazed specimen.
In this paper we present a new method for the determination of fibril volume fraction vy
which utilizes the absolute small-angle X-ray scattering combined with the precise
measurement of the sample extension.

Theoretical
Let us suppose that a parallel X-ray beam, the effective width (7) of which is a, is incident
on a crazed specimen of thickness t. The craze is considered to comprise uniaxially
oriented fibrils embedded in a void slab as illustrated by Brown et al. (8), the axis of the
orientation being parallel to the tensile direction. Since the autocorrelation function of the
electron density of the fibrils is regarded as cylindrically symmetric, the scattered intensity
can be written as i(sr , sZ) in the electron unit, where Sr and sZ are respectively the radial and
the axial components of the scattering vector s with Isl=(2sin9)/),, where I, is the
wavelength and 9 is half of the scattering angle. In terms of the equatorial component
ip(Sr) of (Sr,i  sZ) defined by

1p(r) = 5	 (Sr'sz) z	 ( 1)

the invariant Q, in the electron unit, can be computed by

Q = jo 27rsr ip (Sr )dSr 	(2)

If the craze is regarded as a two-phase system with smooth and distinctive interfaces
between the fibril and the void, Q can be related to the volume fraction v f of the fibrils
within the craze through the equation (8, 9)

Q=(OP)2 V,rvf(1 — vf)	 (3)

where Ap is the electron density difference between the fibril and the void, V p, is the
irradiated volume of the crazes.
Since we are dealing with brittle fracture, we assume that ductile deformation outside the
craze be negligible, and that the cross-sectional dimensions of the specimen remain virtually
constant after crazing due to the lateral constrain normal to the stress. The dilation of the
specimen owing to the elongation after crazing can then be regarded as associated
exclusively with the voids within the crazes. By equating the volume of the irradiated voids
and the volume increment, we obtain the relation VC.(1—vf) t8, where S denotes the
elongation of the specimen due to crazing. Substitution of this relation in Equation 3 yields

Q = (Ap)2 vfatS	 (4)

The smeared scattering intensity 1(sr) obtained by slit-collimated experiments is the
accumulation along the meridian or the x 3 -axis in the detector plane, which corresponds to
the integration with respect to the s Z axis in the reciprocal space. For small scattering angles
we can approximate

sZ = (2 sin 0) / 2 = x3 /(AR)	 (5)
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where R is the sample-to-detector distance. Therefore we obtain the following expression
for i(Sr ) in an absolute scale (6)

1(s) = ale J i(Sr,X3)d53 = AeARJi(s , sz)dsz =Ae ARip(sr)	 (6)

where we have used abbreviations for s,, and A e is the scattering amplitude of an electron
given by

Ae = e2P/R (7)

The polarization factor has been omitted because of small scattering angles, re denotes the
classical radius of an electron, and P is the primary beam intensity. The experimental
invariant Q, which is defined by Equation 2 with substitution of i(sr) by 1(s), is therefore
related to the theoretical invariant Q through

= eR Q (8)

Combining Equations 4 and 8 we obtain

R
of = Q2^ (Ap)Zt •  (9)

where FP is the primary beam intensity per unit length on the sample plane. The efficiency
and the channel or slit width of the detector are canceled out when the scattered intensity
and the primary beam intensity are measured on the same detector conditions.
Equation 9 indicates that measurements of the experimental invariant ( and the increment 8
of the specimen length enable us to evaluate the volume fraction of of fibrils in the crazes,
provided that the electron density difference Ap and other instrumental constants are
known.
A few comments on the determination of (5, FP and 7(s) may be useful to conform with
actual experimental conditions. Firstly, in the above discussion, we have assumed that the
crazes contributing to the increase 6 of the specimen length also contribute to the measured
scattering. In reality, however, whereas all the crazes contribute to the increase in the
specimen length, not all the crazes grown in the specimen contribute to the scattering
because they are not irradiated by the incident beam. To be specific, we consider the
following two different typical cases.
Case 1: The length of the specimen is larger than that of the primary beam on the sample
plane, and the crazes initiate homogeneously over the entire length of the specimen between
the chucks of the tensile machine, as shown in Figure 1 (a). In this case, the value of 6 to
be inserted in Equation 9 should be reduced by multiplying the total sample extension
measured as a movement of the crosshead of the tensile machine by a factor of ks=
(effective length of primary beam on the sample plane)/(total sample length between
chucks).
Case 2: The region of crazing is localized because of the presence of a stress concentrator
such as a pair of notches carved on the specimen, so that the length of the primary beam is
larger than that of the crazed part of the specimen, as shown in Figure 1 (b). In this case,
no correction to the sample extension is necessary to obtain the correct value of S, since all
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the crazes contribute to the scattering to be	 detector plane

measured on the detector plane (after an	 sample plane

flappropriate correction by k0 ; see below).	 chuck

Secondly, for most slit-collimated SAXS length limiting
cameras, the incident X-rays are not	 aperture	 effective beam lenp

parallel as assumed above but are divergent -ray source	 on the detector la

	the direction of the longitudinal axis 	 effectiv beam len th	 detee 1ialong	 on theysample plane	 leng
of the slits, i. e. the x3 -axis, as is	 .1.
illustrated in Figure 1 (a). As a conse- 	 Li
quence the primary beam intensityEP r 	 crazed specimenq	 P arY 	 Pe	 crazed specimen

unit length on the sample plane is not the
same as that on the detector plane; the latter	 (a)
is usually measured experimentally by an
appropriate method (10, 11). Therefore,
the value of FP should be corrected by a
factor of k (effective length of the
primary beam on the detector plane)/(effec- 	 p	 localized

five length of the primary beam on the	 crazed zone

sample plane).	 This factor is easily	 detector length

estimated either by geometrical considera-
tion	

O
 or by actual measurements of the

profile of the primary beam.
Finally, the above derivation assumes that	 (b)
the detector slit length is long enough to
receive all the scattering divergent along	 Figure 1: Geometry of slit-collimated
the x3-axis, which is usually not the case 	 small-angle X-ray scattering camera
in reality. We consider the two typical	 equipped with tensile machine with (a)
cases as described above, 	 homogeneously crazed specimen and (b)
Case 1: The correction factor to be 	 specimen with localized crazes.
multiplied to obtain Q is kQ = (effective
length of the primary beam on the detector plane)/(detector slit length or window width of
PSPC).
Case 2: Even in this case, the region where the scattering from the crazes can be observed
on the detector plane has a certain dimension because of the finite length of the radiation
source, as shown in Figure 1 (b). The correction factor to obtain 12 is ko=(length of the
image of the radiation source on the detector plane)/(detector slit length or window width of
PSPC). Note that, in Case 1, the effective lengths of the primary beam on the sample and
the detector planes cancel out in the correction by the factor of k8k,, leaving the detector
slit length and the distance between the chucks.

Experimental
Atactic polystyrene was purchased from Wako Pure Chemical Industries, Ltd., Japan. The
molecular weight was determined to be 223,000 by gel permeation chromatography. A
sheet of 1 mm thick was hotpressed at 230°C under the pressure of 100 kgf/cm 2 .

Rectangular specimens of size 60 mm long X 15 nun wide were cut out from the sheet and
used for SAXS experiments.
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Figure 2: Load-extension curve (solid line) for
polystyrene at 50°C, and semi-total excess
SAXS intensity measured during extension
(open circles).
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Measurements of SAXS were made with a Kratky U-slit camera modified in harmony with
the detector resolution. A tensile machine was mounted on the camera to stress the
specimen in order that SAXS may be measured during the fracture process. The slits of the
camera are set parallel to the longitudinal axis of the specimen, and the tensile stress is
applied along this direction. A Rigaku one-dimensional position-sensitive proportional
counter (1D-PSPC) of delay-line type was used to measure the fibril scattering. The long
axis of the PSPC window was placed perpendicularly to the slit direction to measure the
scattering pattern normal to the fibrils. The CuKa radiation from a Rigaku X-ray generator
powered by 40 kV and 50 mA was used after filtration with a 10.tm-thick Ni foil to reduce
the K radiation. The sample was maintained at 50°C during the measurement in a
temperature-controlled chamber.
The primary beam intensity was
determined with a reference to the
excess scattering from a standard
polystyrene of calibrated molecular
weight dissolved in cyclohexane at
35°C, the 6-temperature.
The crosshead speed of the tensile
machine was 3 µm/s, which
corresponds to the nominal strain
rate of 8x 10-5/s, the original
distance between a pair of chucks
being 3.8 cm. The scattered
intensity was at first accumulated at
intervals of 200 s during continuous
extension of the specimen in order to
monitor the initiation and growth of
crazes. Then after an enough
number of crazes had been grown,
the extension was stopped and the
scattering was collected until enough
statistics were obtained.

Results and discussion
The upper solid curve in Figure 2
represents the load-extension relation „r
observed during the SAXS
measurement. Hooke's law is
obeyed up to the extension of about
150 µm, while deviation due to
yielding is observed thereafter, as is
typical of a glassy polymer.
Regularly accumulated SAXS
intensity can serve as a measure for
the initiation and growth of crazes.
Scattering observed for the un-
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Figure 3: Excess scattered intensity from crazed
polystyrene stressed at 50°C.
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strained specimen was regarded as the tentative background to be subtracted from the
scattering thereafter to obtain the excess scattering attributable to the crazes alone. The
excess scattering was then integrated according to Equation 2 to estimate the semi-total
intensity, the integration being terminated at s=0.028 nm t for simplicity. The results are
plotted by the open circles in Figure 2. No appreciable excess scattering is detected until
the extension reaches 150 µm, reflecting the structureless feature of a glassy polymer. The
excess scattering begins to rise when the extension exceeds this point, indicating the
formation of the crazes. The range of no excess scattering is in accordance with the region
of Hookean elasticity. The excess scattering afterwards increases with an increase of the
deviation from the linearity in the load-extension curve. These observations reconfirm that
the non-linearity in the curve is caused by the yield by crazing.
We assume that the elastic component of the extension obeys Hooke's law up to the fracture
point with the same elastic modulus
as that observed in the small
extension region as shown by the
dotted line in Figure 2. We further
assume that the remaining plastic
extension is associated exclusively
with the formation of the crazes, as it
is prerequisite for the application of
Equation 9. We consider these
assumptions to be reasonable for
brittle fracture in plastics at
temperatures well below its glass
transition temperature. Their validity
can be confirmed by the fact that the
uncrazed part of the specimen
completely recovers its shape and
dimensions immediately after the
fracture. The geometrical construc-
tion illustrated in Figure 2 leads to
the value of 17.4 itm as the plastic
component for the total extension of
the specimen between the chucks.
Figure 3 represents the scattering
curve observed at the maximum
specimen extension corresponding to
the rightmost point in Figure 2. The
scattering before crazing has been
subtracted as the background. A
scattering maximum, indicative of
the interference between oriented
fibrils, is observed, which is typical
of crazes in a glassy polymer.
Since the integration in Equation 2
ranges up to infinity, an accurate
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Figure 4: Porod plot for the same data as in
Figure 3 for determination of Porod constant
k t .
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Figure 5: Determination of invariant 2.
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Table 1: Fibril volume fraction of in crazes observed for polystyrene by various
investigators.

method and investigator	 fibril volume fraction v1 in crazes

this work 0.26

refractive indices by Kambour (2) 0.6
level differences on the fracture surface by 0.30Doyle (3)
mass thickness contrast in TEM by 0 27Lauterwasser et al. (4)
the same method as above by Brown (5) 0.24±0.03

the same method as above by Donald et al.(13) 0.26

the same method as above by Yang et al. (14) 0.25

evaluation of the integral requires exact knowledge of the tail end of the scattering curve.
For uniaxially oriented rods with smooth and well-defined surface, we can expect Porod's
law (12) to be obeyed in the form of I(s)=k 1 /s 3 . Figure 4, in which s 31(s) is plotted vs.
s 3 , demonstrates the validity of the law in the range s>s*=0.028 nm 1 , and allows the value
of k l to be evaluated. The contribution from the range s>s* to the integral was analytically
calculated with the value of k l as 21tk 1 /s*. The contribution from the smaller angular
region sus* was determined by the graphical integration in the plot of sI(s) vs. s, as shown
in Figure 5. The value of 0 thus obtained before correction for geometrical factors is 4.96
X 1011 . The primary beam intensity FP is 1.80 X 104 . The sample thickness t is 9.62 x
10-2 cm. The width of 1D-PSPC window is 1.0 cm. The electron density difference Ap
between the polymer and the voids is 3.25 X 1023 cm 3 . The sample-to-detector distance
R is 53.7 cm. The classical radius of an electron re is 2.82 X 10- t 3 cm, and the X-ray
wavelength A is 1.54 X 10-8 cm.
The result of v1 calculated with these parameters is listed in Table 1. The table also includes
the values obtained by other methods for comparison. Although Kambour's value (2)
based on the measurements of refractive indices seems to be an overestimate, the remaining
values show a concentration around v1 =0.21-0.30.  We conclude, therefore, that the result
v1 =0.26 obtained in this study is in good agreement with these values, and that the validity
of the new method is assured.
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